Passive microfluidic pumping using coupled capillary/evaporation effects.
نویسندگان
چکیده
Controlled pumping of fluids through microfluidic networks is a critical unit operation ubiquitous to lab-on-a-chip applications. Although there have been a number of studies involving the creation of passive flows within lab-on-a-chip devices, none has shown the ability to create temporally stable flows for periods longer than several minutes. Here a passive pumping approach is presented in which a large pressure differential arising from a small, curved meniscus situated along the bottom corners of an outlet reservoir serves to drive fluid through a microfluidic network. The system quickly reaches steady-state and is able to provide precise volumetric flow rates for periods lasting over an hour. A two-step mathematical model provides accurate predictions of fluid and mass transport dynamics in these devices, as validated by particle tracking in laboratory systems. Precise flow rates spanning an order of magnitude are accomplished via control of the microchannel and outlet reservoir dimensions. This flow mechanism has the potential to be applied to many micro-total analytical system devices that utilize pressure-driven flow; as an illustrative example, the pumping technique is applied for the passive generation of temporally stable chemical gradients.
منابع مشابه
Paper pump for passive and programmable transport.
In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based ...
متن کاملHydrophilic Sponges for Leaf‐Inspired Continuous Pumping of Liquids
A bio-inspired, leaf-like pumping strategy by mimicking the transpiration process through leaves is developed for autonomous and continuous liquid transport enabled by durable hydrophilic sponges. Without any external power sources, flows are continuously generated ascribed to the combination of capillary wicking and evaporation of water. To validate this method, durable hydrophilic polydimethy...
متن کاملManaging evaporation for more robust microscale assays. Part 2. Characterization of convection and diffusion for cell biology.
Cell based microassays allow the screening of a multitude of culture conditions in parallel, which can be used for various applications from drug screening to fundamental cell biology research. Tubeless microfluidic devices based on passive pumping are a step towards accessible high throughput microassays, however they are vulnerable to evaporation. In addition to volume loss, evaporation can l...
متن کاملParticle Continuous Separation by Evaporation Force on Microfluidic System
-We propose a novel microfluidic system for continues particles separation by using capillary force and evaporating force. Typically, the microfluidic system needs external force or extra pumps to drive fluids, which were caused system complexity. It is a kind of the simple method to utilize evaporation force and capillary force on driving liquid. The particles can be continuously separated acc...
متن کاملA passive pumping method for microfluidic devices.
The surface energy present in a small drop of liquid is used to pump the liquid through a microchannel. The flow rate is determined by the volume of the drop present on the pumping port of the microchannel. A flow rate of 1.25 microL s(-1) is demonstrated using 0.5 microL drops of water. Two other fluid manipulations are demonstrated using the passive pumping method: pumping liquid to a higher ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 9 23 شماره
صفحات -
تاریخ انتشار 2009